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A B S T R A C T

The combination rules of the Dempster-Shafer evidence theory can lead to illogical results for highly conflicting 
evidence from different information sources. We propose a general formula for conflict degree calculation from 
the perspective of modifying evidence sources as a weighted sum of conflict coefficients and Jousselme distance, 
and the new metric of focal element dispersion is defined by adaptively adjusting the ratio of these two metrics: if 
the focal element dispersion is too high, the impact of conflict coefficients is increased, and vice versa. We then 
define the concept of preference consistency and propose a formula for calculating this metric that redistributes 
the weights of individual pieces of evidence based on the preferences of all evidence. Finally, typical examples 
show that the proposed rules can manage conflicting evidence with better convergence and interference 
resistance.

1. Introduction

Decisions may have to be made by integrating information from 
multiple sources in complex environments, while these sources can be 
inconsistent with each other due to, e.g. incompleteness and uncertainty 
of information, subjectivity of each decision agent, etc. This makes it a 
challenging issue to reasonably fuse conflicting evidence in information 
fusion.

Dempster-Shafer theory [1,2], as an uncertainty inference method 
and a general extension [3] of Bayesian theory, has been widely used in 
data fusion [4,5], debate reasoning [6], pattern recognition [7,8], etc. 
due to its capability of handling imprecise information [9] and dealing 
with conflicts. In Dempster-Shafer theory, reasoning is performed by 
aggregating independent sources of evidence from different sources, but 
the results of evidence fusion according to the combination rules are 
often unsatisfactory for highly conflicting evidence sources, or even 
completely contradict the subjective opinions [10,11]. One group of 
scholars directly improves on the Dempster-Shafer theory’s rules of 
combination. Yager [12] assigns the conflicting part of the evidence to 
the recognition framework, but greatly reduces the probability value 

assigned to the focal element. Dubois and Prade [13] assign the con
flicting evidence to the concatenation of conflicting focal elements, but 
the method undermines the Dempster-Shafer theory combination rule of 
the union law. Lefevre [14] put forward a general framework for conflict 
redistribution after integrating multiple combination rules. Mihai Cris
tian Florea [15] and Yee leung [16] use the analysis and combination 
rules to distribute some of the conflicts to all groups in a certain pro
portion. Gao [17] and Deng [18] use quantum theory to simulate the 
uncertainty of mass function. Another group directly modifies the 
sources of evidence. Murphy [19] performs weighted averaging of 
sources of evidence before combining them. Deng [20] gives a method 
for calculating the weights of sources of evidence by means of the 
evidential distances proposed by Jousselme [21]. Jiang [22] fuses the 
conflict k and the Jousselme distance to jointly represent the evidential 
conflicts, but does not give the weight calculation of the fused two. Fei 
[23] adopted the evidence best-worst method and combined it with DST 
to make up for the limitation of the traditional weight calculation 
method in expressing uncertainty. Liu and Xiang [24] form a composite 
discount factor to correct the body of evidence based on improved 
Shafer conflict metric formula, Jousselme distance, trust entropy and 
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game theory. Huang [25] proposes an enhanced belief log-log similarity 
measure based on DST that better takes into account the internal dif
ferences of subsets. Hamda [26] utilized Hellinger’s distance and Deng’s 
entropy, a measure of conflict and uncertainty in evidence, to assess the 
reliability of evidence and its weights, reducing the impact of unreliable 
evidence. Although several methods and alternatives have been pro
posed in the literature, the first category of methods would destroy the 
exchange and combination properties of the classical Dempster combi
nation rule, and how to effectively resolve conflicts between evidence is 
still an open question for the second category of methods that needs 
further improvement.

In this paper, an improved evidence combination rule based on 
adaptive weight correction is proposed to improve the ability of 
Dempster-Shafer theory to manage high conflict evidence. The method 
defines two new metrics: (i) the degree of focus dispersion and (ii) 
preference consistency. The method aims to assess the importance of 
each source of evidence in preprocessing by two metrics. The main idea 
is to assign a high weight to sources with more focused information and 
higher degree of consistency and a low weight to sources with more 
dispersed information and lower degree of consistency. This strategy 
aims to reduce the conflicting influence of sources with more dispersed 
information or higher degree of consistency angle on the final combi
nation results, thus improving the system’s ability to manage conflicting 
evidence.

The main contributions of this study are summarized as follows： 

− We first propose a measure of evidence focal element dispersion, 
which can effectively quantify the degree of concentration of the 
information distribution of the evidence sources to improve the 
combining strategy of conflict coefficient k and Jousselme distance in 
weight correction.

− Defined a metric of evidence preference consistency, which can 
effectively quantify the degree of tendency consistency of each piece 
of evidence, when the degree of consistency is higher we will in
crease the credibility of the evidence to improve its weight.

− Finally, we apply the proposed method to some classical examples as 
well as Monte Carlo simulations to demonstrate the good perfor
mance compared to other typical combination rules. The results 
show the superiority of the rules proposed in this paper in terms of 
conflict evidence management, convergence speed, anti-interference 
ability and accuracy of decision making.

The rest of the paper is composed as follows: Section 2 introduces 
some basic theories, including Dempster-Shafer theory, a weight 
correction rule proposed by Jiang [22]. Section 3 introduces the con
cepts of Lai Jiao Yuan discretization and preference consistency and 
their metric formulas as a way to make improvements to the weight 
correction rule. Section 4 presents and discusses specific examples 
comparing the improved weight correction rule with some classical 
rules. Finally, we summarize the whole paper in Section 5.

2. Dempster-Shafer theory of evidence

Evidence theory is an uncertainty-based reasoning method that 
demonstrates the degree of uncertainty of information and fuses multi
ple sources of information for the purpose of reasoning and decision 
making. To facilitate the discussion, this section first briefly introduces 
the basic concepts of the theory and the problems of the combination 
rules, and then proposes a new rule of evidence fusion by modifying the 
evidence sources.

2.1. Basic concepts

In evidence theory, the uncertainty of information is determined by 
the identification framework and the probability distribution function.

Assuming that Θ = {θ1, θ2,…, θn} is a finite nonempty set containing 

all single hypotheses of the target problem and that the hypotheses are 
independent of each other. Θ is called the identification framework and 
2Θ is the power set of Θ, denoting the set consisting of all subsets of Θ. In 
the specific problem, the plausibility of any proposition can be repre
sented by a subset of the identification framework.

The Basic Probability Assignment function (BPA) m is represented as 
a mapping of the power set 2Θ to [0,1], which assigns probability values 
to all subsets of the recognition framework, while the function m sat
isfies the following two conditions: 

m(∅) = 0 (1) 

∑

A⊆Θ
m(A) = 1 (2) 

Let A be an element of the power set. The basic probability assign
ment of the set A can be expressed as m(A), which can be interpreted as 
the probability of supporting a true subset of Θ that belongs to the set A 
but not to a true subset of the set A, where the probability of the empty 
set is 0 and the sum of the probabilities of all subsets in Θ is 1. The value 
of m(A) is expressed as the plausibility of the proposition A. If m(A) = 0 
or m(A) = 1 mean that the proposition A is completely implausible or 
completely plausible, respectively, and if m(A) > 0, the proposition A is 
said to be the focal element (focal element).

For an identification framework Θ, two other important metric 
functions based on the basic probabilistic distribution function m are the 
confidence function Bel(A) and the likelihood function Pl(A): 

Bel(A) =
∑

B⊆A
m(B) (3) 

Pl(A) =
∑

A∩B∕=∅
m(B) (4) 

Bel(A) and Pl(A) are the minimum uncertainty and maximum un
certainty of the set A, respectively. [Bel(A),Pl(A)] can be used to denote 
the uncertainty of the set A degree of confidence interval, and the 
relationship between them is as follows: 

Pl(A) = 1 − Bel(A) (5) 

Pl(A) ≥ Bel(A) (6) 

where A is the complement of A. If the difference between Bel(A) and 
Pl(A) is too large, the reliability of this information source is low.

2.2. Combination rules

When there are multiple independent sources of evidence, the 
Dempster-Shafer theory’s evidence combination rule is: 

m(A) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

∩Aj=A

∏n

i=1
mi

(
Aj
)

1 − k
A ∕= ∅

0A = ∅

(7) 

where n denotes the number of independent sources of evidence, and 
mi(Aj) denotes the underlying probability assignment value of Aj under 
the ith source of evidence, and k denotes the degree of conflict among 
the n independent sources of evidence: 

k =
∑

∩Aj=∅

∏n

i=1
mi

(
Aj
)

(8) 

k is the probability of the empty set before normalization when ev
idence is fused, called the conflict coefficient, which represents the de
gree of conflicting information among evidence sources. k is between the 
interval [0,1], and a larger value of k indicates a higher degree of conflict 
among evidence sources.

There is an unavoidable problem with Dempster’rule. When the 
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evidence is completely conflicting, i.e. when k = 1, the value of the 
denominator 1 − k used for normalization in the combination rule is 0, 
and the formula cannot be used for combination at that time. In addi
tion, when the evidence is highly conflicting, i.e. when k→1, the results 
of using this combination rule are often unrealistic and counterintuitive.

Example 1. Consider the case of highly conflicting evidence, which 
we illustrate using a classic counterexample proposed by Zadeh [10]. 
Suppose there exist two independent sources of evidence m1 and m2 
under the same identification framework Θ = {θ1, θ2, θ3} such that the 
structure of the two sources is as follows:

{
m1 : m1(θ1) = 0.9,m1(θ2) = 0.1
m2 : m2(θ2) = 0.1,m2(θ3) = 0.9

The results of evidence fusion using the D-S evidence combination 
rule are: m(θ1) = 0,m(θ2) = 1,m(θ3) = 0. It is easy to see that both m1 
and m2 provide low support for hypothesis θ2, but the fusion result is 
fully supportive of hypothesis θ2. In addition, m1 and m2 provide high 
support for hypotheses θ1 and θ3. However, the fusion result is not 
supportive of these two hypotheses. This fusion result is seriously 
counterintuitive.

3. Adaptive weighting correction rule

3.1. The weighting correction rule

In order to avoid the problem that the Dempster’rule cannot handle 
highly conflicting evidence, a class of weighting correction rule has been 
proposed [22] to use the conflict coefficient and Jousselme distance as 
indicators of the degree of conflict between evidence sources, and by the 
degree of conflict with other evidence, the weights of each evidence 
source can be determined for weighted averaging to modify the evidence 
sources. When both indicators are larger, the evidence is more con
flicting with other evidence, less similar and less credible, and therefore 
is assigned a smaller weight, and vice versa. We call this rule the WCR, 
where the weights among the n evidence sources are calculated as 
follows.

Let m1 and m2 be two BPAs under the identification frame Θ. Then 
the Jousselme distance (also called evidence distance) between m1 and 
m2 is: 

d12 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2

(⃒
⃒|m1
̅→

||
2
+
⃒
⃒|m2
̅→

||
2
− 2〈m1

̅→
, m2
̅→

〉
)

√

(9) 

where ||m→||
2
= 〈m→, m→〉, 〈m1

̅→
, m2
̅→

〉 denotes the inner product of two 
vectors. 

〈m1
̅→

, m2
̅→

〉 =
∑m

i=1

∑m

j=1
m1(Ai)m2

(
Aj
)
⃒
⃒Ai ∩ Aj

⃒
⃒

⃒
⃒Ai ∪ Aj

⃒
⃒

(10) 

where m denotes the power set 2Θ of elements, A denotes an element 
of 2Θ, and |A| is called the potential of A, i.e. the number of elements 
contained in the set A, m denotes the number of elements of the power 
set 2Θ

.
Let there be a total of n evidence sources, the two-two evidence 

distance d and the conflict coefficient k of all evidence sources can be 
calculated by Eqs. (8) and (9), and the conflict degree c is obtained by 
averaging the two indicators and expressed as the conflict degree matrix 
CM: 

CM =

⎡

⎢
⎢
⎣

c11 c12 ⋯ c1n
c21 c22 ⋯ c2n
⋮ ⋮ ⋱ ⋮

cn1 cn2 ⋯ cnn

⎤

⎥
⎥
⎦ (11) 

cij =
dij + kij

2
(12) 

where CM is the symmetric matrix and cij denotes the conflict degree 
between mi and mj. When the conflict degree is smaller, the similarity 

between evidence is larger, so define the similarity between m1 and m2 

as Sim12: 

Sim12 = 1 − c12 (13) 

Based on the distance matrix CM, the similarity matrix SMcan be 
obtained as follows: 

SM =

⎡

⎢
⎢
⎣

sim11 sim12 ⋯ sim1n
sim21 sim22 ⋯ sim2n

⋮ ⋮ ⋱ ⋮
simn1 simn2 ⋯ simnn

⎤

⎥
⎥
⎦ (14) 

When the similarity between two sources of evidence is greater, it 
means that the credibility of these two sources of evidence is higher, so 
the similarity between mi and other evidence can be used to express the 
support of other evidence for mi, denoted as Supi: 

Supi =
∑n

j=1,j∕=i
Simij (15) 

The credibility of mi can be expressed quantitatively by normalizing 
the support of mi by other evidence, denoted as Crdi: 

Crdi =
Supi

∑n

i=1
Supi

(16) 

It is not difficult to find that when the conflict coefficient k and the 
evidence distance d between mi and other evidence are smaller, the 
higher the credibility and the greater the weight. The weighted average 
of the evidence sources by Murphy’s method [19] yields the 
weight-corrected evidence sources mWAE(A): 

mWAE(A) =
∑n

i=1
Crdi⋅mi(A) (17) 

where A is an element of the power set 2Θ. The corrected evidence 
mWAE(A) is combined n-1 times with Dempster’rule to be the final fused 
evidence. The weight calculation process of WCR is shown in Fig. 1.

When the source reliability of the evidence is unknown, the above 
rule can be used to correct the evidence by assigning weights to the 
evidence in terms of interrelationships between the evidence. However, 
in the process of calculating the degree of conflict, the rule always uses 
the same proportion to fuse the two indicators of conflict coefficient and 
evidence distance. When there is consistency between these two in
dicators, the degree of conflict between evidence can be calculated 
effectively. When dealing with some special evidence sources, the two 
will be inconsistent, and at this time, if the two indicators are fused with 
the same proportion, the obtained conflict degree does not give a 
reasonable explanation.

Example 2. Considering the case of inconsistent conflict coefficients 
and evidence distance indicators, assume the existence of two sets of 
evidence, each containing two independent sources of evidence under 
the same identification framework Θ = {θ1, θ2, θ3} such that the struc
ture of the two sets of evidence sources is as follows.

{
m1 : m1(θ1) = 0.4,m1(θ2) = 0.3,m1(θ3) = 0.3
m2 : m2(θ1) = 0.4,m2(θ2) = 0.3,m2(θ3) = 0.3

{
m3 : m3(θ1) = 0.8,m3(θ2) = 0.1,m3(θ3) = 0.1
m4 : m4(θ1) = 0.8,m4(θ2) = 0.1,m4(θ3) = 0.1

Calculated from Eqs. 8 and 9 we get k12 = 0.66, d12 = 0, k34 = 0.34 
and d34 = 0. It can be found that the two metrics do not vary consis
tently under different groups, and the credibility of the results cannot be 
explained if both metrics are given a weight of 0.5 to find the degree of 
evidence conflict under these two different groups of evidence. The 
reason for the inconsistency of the metrics is the inconsistency of the 
discrete characteristics of the focal elements of the evidence itself. 
Although the basic probability assignments of the two evidence sources 
in each group are exactly the same, because the probability assignments 
of the second group are more concentrated compared with the first 
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group (both assign a larger mass to θ1), the degree of focal element 
dispersion is smaller, resulting in a smaller conflict coefficient in the 
second group. Therefore, when the two metrics are fused, when the 
degree of focal element dispersion of the evidence is smaller, the conflict 
coefficient indicator k should theoretically be assigned a larger weight 
and the evidence distance metric d should be assigned to a smaller 
weight to balance the influence of the two metrics in the matrix from the 
dynamics.

3.2. Concept of adaptive weighting correction rule

Regarding the weighting correction, we have already pointed out in 
Example 2 that the traditional weighting correction does not take into 
account the effect of the degree of dispersion of focal elements. From an 
informational perspective, when a source is more focused in the 
assignment of evidence focal elements, the more valid the information 
contained in the source is, and the less discrete the focal elements within 
the evidence are at that time. Conversely, when the assignment of focal 
elements in an evidence source is relatively balanced, the degree of 
uncertainty of that evidence is higher. In the following, we introduce 
information entropy to measure the dispersion of focal elements within 
the evidence, and automatically balance the weights of conflict coeffi
cient k and evidence distance d according to the dispersion of focal el
ements of the evidence to be fused. We call this rule the adaptive weight 
correction rule, referred to as AWCR.

Definition 1. Let mi be a BPA under the recognition frame Θ. The 
power set 2Θ of this recognition frame has n elements, then the degree of 
focal element dispersion can be defined as: 

Dfei =

−
∑n

j=1

mi(θj)∕=0

mi
(
θj
)
ln
(
mi

(
θj
))

ln(n)
(18) 

The information entropy increases as the uncertainty of the evidence 
increases, and obviously Dfei is an increasing function of the uncertainty 
of mi. The information entropy is minimized to − ln(1) = 0 when a focal 
element in the evidence is assigned the full mass, and maximized to 1 
when the mass of each focal element of the evidence is 1/n. Thus by 
normalization of the maximum information entropy, the Dfei ∈ [0,1].

Definition 2. Let mi and mj be two BPAs under an identification 
framework Θ, the degree of conflict between two sources of evidence 
can be defined by making an improvement to Eq. (12) as: 

Kij = wk
ijkij +wd

ijdij (19) 

where wk
ij and wd

ij denote the conflict degree weighting factor and 
evidence distance weighting factor between mi and mj based on the 
degree of dispersion of focal elements: 

wk
ij = 1 −

Dfei + Dfej

2
(20) 

wd
ij =

Dfei + Dfej

2
(21) 

where wk
ij denotes the total focal element dispersion of mi and mj 

taking values in the range [0,1], it is obvious that wk
ij + wd

ij = 1. And it is 
consistent with the ideal behavior of adaptive weight correction: as the 
focal element dispersion of the two evidence sources to be fused in
creases, the influence of the conflict coefficient k on the degree of con
flict decreases accordingly, and the influence of the evidence distance 
d increases accordingly, so that wk

ij is a decreasing function of the total 
focal element dispersion and wd

ij is an increasing function. The weight 
calculation process of AWCR is shown in Fig. 2.

1)When Dfei + Dfej→0,
wk

ij→1, wd
ij→0, Kij→kij

2) When Dfei + Dfej→2,
wk

ij→0, wd
ij→1, Kij→dij

Fig. 1. WCR’s weight calculation process.

Fig. 2. AWCR’s weight calculation process.
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3) When Dfei + Dfej→1,
wk

ij→0.5, wd
ij→0.5, Kij→

kij+dij
2

It can be seen that the conflict coefficient k and the evidence distance 
d and the averaging treatment correspond to three special cases in this 
rule where the total focal element dispersion is too small, too large and 
appropriate.

3.3. AWCR with preference consistency

ARCR only considers the degree of focal element dispersion of the 
evidence to be fused. However, in a piece of evidence, its largest focal 
element is the most critical focal element of this evidence, which con
tains the largest amount of information about this evidence and repre
sents the overall preference of the evidence. Therefore, we add another 
measure of evidence bias, preference consistency, to redistribute the 
evidence weights of AWCR, and we call this rule AWCR1(AWCR with 
preference consistency).

Definition 3. With n sources of evidence m1,m2,…,mn from the 
same identification frame Θ under which the power set 2Θ has a total of 
m elements, there exists a maximum focal element location matrix 
defined as P: 

P =

⎡

⎢
⎢
⎣

p11 p12 ⋯ p1m
p21 p22 ⋯ p2m
⋮ ⋮ ⋱ ⋮

pn1 pn2 ⋯ pnm

⎤

⎥
⎥
⎦ (22) 

pij =

{
1ifj ∈ pos(max(mi))

0else (23) 

Where pos(max(mi)) denotes the position of max(mi), i.e. the set of 
positions consisting of the element indices of all maximal focal elements 
of mi in the power set 2Θ. According to the matrix P, the preference 
consistency of each evidence source can be measured as follows.

1) When mi has only one maximum focal element. 

Prei =
∑n

x=1
pxy (24) 

Where y = pos(max(mi)), the set pos(max(mi)) contains only one 
element since there is only one maximal focal element in mi at this point.

2) When mi has more than one maximum focal element. 

Prei =
1

|max(mi)|

∑

y∈pos(max(mi))

∑n

x=1
pxy (25) 

where |max(mi)| denotes the potential of max(mi), i.e. the maximum 
number of focal elements of mi. Prei is the preference consistency of mi. 
The position of the largest focal element in the evidence represents the 
preference of that evidence. When there are more evidence with the 
same preference, their preference consistency is higher, and their 
credibility is higher compared with other evidence, and they should be 
assigned higher weights. When mi has only one maximal focal element, 
its preference consistency is expressed as the sum of the values of the 
columns where this focal element is located in the matrix P. When mi has 
more than one maximal focal element, its simultaneous existence of 
multiple preferences, the consistency of its individual preferences is 
expressed as the sum of the values of the columns in which each maximal 
focal element is located in the matrix P, and its preference consistency is 
expressed as the average of the consistency of each preference. It is easy 
to see that Eq. (24) is a special case of Eq. (25), so the preference con
sistency of all evidence can be represented by Eq. (25).

Definition 4. Let mi be a BPA under the identification framework Θ, 
which has a power set 2Θ with n elements. Making improvements to Eq. 
(16), the confidence level of mi can be defined as: 

Crdi =
Supi⋅Prei

∑n

i=1
Supi⋅Prei

(26) 

Obviously, Crdi is an increasing function of Prei. As the evidence 
preference consistency increases, its credibility increases accordingly, 
which is consistent with the ideal behavior of preference consistency. 
the weight calculation process of AWCR1 is shown in Fig. 3. In partic
ular, the computation of the conflict coefficient k and evidence distance 
d requires the computation of n evidence sources two by two with a time 
complexity of O(n2), and the computation of the degree of focal element 
discretization involves the analysis of the BPA of each evidence source 
with a time complexity of O(n). The calculation of preference consis
tency involves identifying and comparing the maximum focal elements 
of each evidence source with a time complexity of O(n). Weight calcu
lation adjusts the weight of each evidence source based on the conflict 
degree, focus element dispersion and preference consistency, the time 
complexity of this process is proportional to the number of evidence 
sources and can be considered as O(n). Finally, according to the adjusted 
weights, the evidence is fused using Dempster’s combination rule, 
although the Dempster-Shafer theory has a potential exponential ex
plosion problem, this method mainly preprocesses the evidence sources 
before fusion, so the time complexity of the two is independent of each 
other, and does not suffer from the Dempster-Shafer theory in the pre
processing process exponential explosion problem. Therefore, the total 
time complexity of this method is O(n2).

3.4. Summary of this chapter

In this chapter, we propose two metrics, focal element dispersion 
degree and preference consistency, to improve the WCR. In the next 
section, we compare the fusion results of AWCR and other existing rules 
under the evidence sources described in the counterexample proposed 
by Zadeh (i.e. Example 1) and verify the advantages of our improved 
rule using several examples.

4. Numerical examples

4.1. Combination of two pieces of evidence

Example 3. Based on the example in [10], assume the existence of 
two independent pieces of evidence m1 and m2 under the same identi
fication framework Θ = {θ1, θ2, θ3} such that the two sources of evi
dence are structured as follows.

{
m1 : m1(θ1) = β,m1(θ2) = α,m1(θ3) = 1 − α − β
m2 : m2(θ1) = 1 − α − β,m2(θ2) = α,m2(θ3) = β

Where 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and 0 ≤ α + β ≤ 1, when α = 0.1 and 
β = 0, Example 3 becomes Example 1. Table 1 summarizes the results 
obtained by applying the improved rules of this paper and some classical 
rules to Example 1. Since there are only two evidences for fusion, both 
evidence weights are 0.5 in both WCR and AWCR, and since the pref
erence consistency of both evidence sources are equal to 1, AWCR1 does 
not make any modification to the weights in the pair reassignment 
process and obtains the same results as WCR and AWCR. All the above 
three rules solve the 1 trust paradox problem in Dempster’rule, and the 
final fusion results all assign a smaller mass to the focal element θ2, 
which is consistent with the intuitive human judgment.

To assess the resistance of various evidence fusion rules to interfer
ence at different levels of conflict, let α = 0.1, the change in β is used to 
modulate the degree of conflict between m1 and m2. Since the preference 
consistency of the two evidence sources is always equal as β varies and 
CM is a symmetric matrix, Thus WCR, AWCR and AWCR1 always have 
the same results in two-evidence fusion, only the fusion results for 
Dempster’s rule and AWCR are shown in Fig. 4.

Fig. 4 presents the sensitivity of the two rules under different 
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conflicts. It is not difficult to find that the fusion results of AWCR1 are 
always more reasonable, assigning larger masses to focal elements θ1 
and θ3 in Fig. 4a. In Fig. 4b, The mass of focal element θ2 is almost zero 
and does not change significantly with the conflict. However, in the 
Dempster’rule, as the degree of conflict increases the mass of each focal 
element changes more and more significantly, focal elements θ1 and θ3 
gradually decrease and eventually converge to 0 in Fig. 4a, while focal 
element θ2 gradually increases and eventually converges to 1 in Fig. 4b, 
giving rise to the 1 trust paradox problem.

4.2. Combination of evidence from multiple sources

In the combination of the two evidence, the weight of the two evi

dence sources is always 0.5 due to the symmetry of the conflict degree 
matrix CM, which cannot change the weight correction value even 
considering the focal element dispersion degree metric, and the prefer
ence consistency metric of the two evidence sources also always remains 
the same and cannot have an impact on the weight correction. To further 
demonstrate the positive impact of these two metrics in the weight 
correction process, in the follow-up we use a multiple evidence fusion 
example to compare the results of each rule．

Example 4. We analyze the role of two metrics, focal element 
dispersion and preference consistency, using a comprehensive numeri
cal example of an automatic multi-sensor-based target recognition sys
tem proposed by [27]. Suppose there exist 7 independent evidence 
under the same recognition framework Θ = {θ1,θ2,θ3}. The final target 
of the system is θ1, where m2 is unreliable evidence, such that the 
structure of the 7 evidence sources is as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1 : m1(θ1) = 0.53,m1(θ2) = 0.15,m1(θ3) = 0.32
m2 : m2(θ1) = 0,m2(θ2) = 0.9,m2(θ3) = 0.1
m3 : m3(θ1) = 0.54,m3(θ2) = 0.06,m3(θ3) = 0.4
m4 : m4(θ1) = 0.57,m4(θ2) = 0.3m4(θ3) = 0.13
m5 : m5(θ1) = 0.55,m5(θ2) = 0.2,m5(θ3) = 0.25
m6 : m6(θ1) = 0.55,m6(θ2) = 0.1,m6(θ3) = 0.35
m7 : m7(θ1) = 0.56,m7(θ2) = 0.15,m7(θ3) = 0.29

According to the two metrics of conflict coefficient k and evidence 

Fig. 3. AWCR1’s weight calculation process.

Table 1 
Fusion of two evidence m1 and m2 in Example 1.

Focal element Dempster Yager WCR AWCR AWCR1

θ1 0 0 0.488 0.488 0.488

θ2 1 0.010 0.024 0.024 0.024
θ3 0 0 0.488 0.488 0.488
Θ 0 0.990 0 0 0

Fig. 4. Comparison of mass between focal element and conflict mass: (a) mass of θ1 or θ3 vs. conflict mass, (b) mass of θ2 vs. conflict mass.
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distance d, the conflict degree matrix of 7 evidence can be obtained from 
Eqs. 9–12, which is the conflict degree matrix CM in WCR:

CM =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.2971 0.7504 0.3311 0.3924 0.3305 0.3125 0.3090
0.7504 0.0900 0.8216 0.6513 0.7167 0.7919 0.7557
0.3311 0.8216 0.2724 0.4393 0.3681 0.3014 0.3370
0.3924 0.6513 0.4393 0.2841 0.3527 0.4109 0.3767
0.3305 0.7167 0.3681 0.3527 0.2975 0.3450 0.3177
0.3125 0.7919 0.3014 0.4109 0.3450 0.2825 0.3156
0.3090 0.7557 0.3370 0.3767 0.3177 0.3156 0.2899

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In AWCR, a metric of focal element dispersion degree is introduced 
for the adaptive assignment of the ratio of k and d. Table 2 shows the 
degree of focal element dispersion for each evidence that can be calcu
lated from Eq. 18.

According to Table 2, the conflicting degrees of evidence are redis
tributed from Eqs. 20 and 21 to obtain the matrix of conflicting degrees 
used in the AWCR for the seven pieces of evidence CM .́

CMʹ =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0611 0.7344 0.1623 0.2262 0.1147 0.1134 0.0918
0.7344 0.1267 0.8144 0.6409 0.7007 0.7804 0.7414
0.1623 0.8144 0.1143 0.3200 0.2126 0.1395 0.1789
0.2262 0.6409 0.3200 0.0785 0.1670 0.2697 0.2121
0.1147 0.7007 0.2126 0.1670 0.0549 0.1610 0.1032
0.1134 0.7804 0.1395 0.2697 0.1610 0.0885 0.1272
0.0918 0.7414 0.1789 0.2121 0.1032 0.1272 0.0688

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In AWCR1, a preference consistency metric was introduced to 
redistribute the final evidence weights, and Table 3 shows the prefer
ence consistency for each evidence source obtained from Eqs. 22–25.

According to the matrix CM and CMʹ, the individual evidence weight 
correction values of WCR and AWCR can be obtained from Eqs. 13–16, 
and then the individual evidence weight correction values of AWCR1 
can be obtained according to Eq. 26 and Table 3.

Fig. 5 presents the weight revision values of the seven evidences 
obtained under the three rules of WCR, AWCR, and AWCR1, i.e. the level 
of confidence in the seven evidences. Among the 7 evidences assumed in 
Example 4, m2 is unreliable evidence and should theoretically be 
assigned a lower weight value. In Table 2 due to the smaller dispersion of 
the focal element of m2, a larger proportion is assigned to k in the 
adaptive assignment of the two metrics k and d, resulting in a significant 
increase in the second row of matrix CMʹ compared to matrix CM, 
reducing the degree of trust in m2 and ultimately reducing the weight of 
m2. In Table 3 since m2 is more biased towards θ2 and the other 6 evi
dences are all biased towards θ1, the preference consistency of θ2 is 1, 
which is significantly smaller than the other evidences, and after the 
reallocation of Eq. 26, the weight of AWCR1 is significantly reduced. 
From the figure, it can be found that the weight of m2 is ranked in the 
order of WCR>AWCR>AWCR1 in the three rules, i.e. the result of 
AWCR1 is most consistent with the theoretical behavior. Table 4

The variation of the mass of each focal element with the number of 
evidence fusion under different rules is shown in Fig. 6. Dempster’s rule 
leads to a constant mass of θ1 in Fig. 6a because the mass assigned to θ1 
by m2 is 0. Yager’s rule, although it can get the correct conclusion, leads 
to less and less information of the fused evidence because the rule as
signs the conflicting part to the identification frame. WCR, AWCR and 
AWCR1 all lead to the correct decision, but in Fig. 6a and Fig. 6b it can 
be found that AWCR1 has better convergence, starting from the fusion of 
the third evidence, and the convergence performance is significantly 
better than the other rules.

The final values of the seven evidences fused under different rules are 
shown in Fig. 7. Among them, the fusion result of Dempster’s rule is 

contrary to intuition, the fusion result of Yager’s rule is not significant in 
terms of decision making, and the latter three rules can obtain better 
results, and the fusion effect is further optimized by the degree of focal 
element dispersion and the preference consistency metric. The accuracy 
of recognizing the correct target under AWCR and AWCR1 reached 
98.56 % and 98.81 %, surpassing all other methods.

4.3. Monte Carlo simulation

To further demonstrate the effectiveness of evidence fusion between 
AWCR and AWCR1 in general, this section uses the Monte Carlo simu
lation proposed by [16] to generate random sources of evidence for 
fusion. We consider the fusion of 10 independent pieces of evidence 
under the same identification framework Θ = {θ1,θ2,θ3}. Assuming that 
the target of this fusion is θ2, we divide the evidence into two categories, 
one for normal evidence with preference θ2 and the other for abnormal 
evidence whose preference is not θ2. 100 independent samples of each of 
these two types of evidence are randomly generated by two algorithms 
in Table 5 and Table 6.

We randomly selected a certain number of two types of evidence 
totaling 10 from the sample for fusion. In each fusion, we randomly set 
the proportion of the two types of evidence among the 10 pieces of 
evidence, where the proportion of abnormal evidence is ≤ 50% 
considering that the target of this fusion is θ2. Thus for each experiment, 
the number of normal evidence > 5 and the number of abnormal evi
dence ≤ 5. The resistance to interference was assessed by the mass 
assigned to θ2 by the various rules. In Fig. 8, we can see that as the 
proportion of abnormal evidence increases, the mass of θ2 decreases in 
the order of WCR > AWCR > AWCR1 > DS > Yager for the five rules. 
the mass of θ2 is slightly less affected in AWCR than in WCR. compared 
to the other rules, AWCR1 has the strongest resistance to interference 
and when the proportion of interference evidence reaches 50 %, the 
mass of θ2 is 0.7738, which is well above the mass mean by 1/3, with 
significant decision making ability.

5. Conclusion

In this paper, we demonstrate the illogical results of Dempster’s rule 
in dealing with the high conflict problem and the information loss 

Table 2 
The degree of focal element dispersion for each evidence.

m1 m2 m3 m4 m5 m6 m7

w 0.5065 0.1671 0.4461 0.4866 0.5125 0.4761 0.4976

Table 3 
Consistency of preferences across evidence.

m1 m2 m3 m4 m5 m6 m7

w 6 1 6 6 6 6 6

Fig. 5. Weight correction value distribution of each evidence under the 
three rules.
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problem of Yager’s combination rule. For evidence conflicts, we propose 
to modify the weight correction rule for evidence sources by using the 
degree of conflict among the evidence to explain the relative reliability 
of the sources. If the sum of conflicts with all other evidence is low, the 
source is reliable, and vice versa.

For evidence conflict, a general formula for the degree of conflict is 
proposed based on the weighted sum of conflict coefficient k and jous
selme distance. And the metric of focal element dispersion degree is 
defined to adjust its weight adaptively. If the total focal element 
dispersion degree of two evidences is higher, the influence of the conflict 
coefficient k is appropriately increased, and vice versa. In addition, the 
metric of preference consistency is defined to recalibrate the weights of 
each evidence. If the evidence shows the same preference as most of the 
other evidence, the reliability of the source is increased, and vice versa.

With some classical examples we compare the proposed rule in this 
paper with the classical rule. In the combined example of two pieces of 
evidence it is shown that the focal element dispersion and preference 
consistency metrics do not affect the weight correction results, but still 

Table 4 
Combination results of different rules.

Combination rule m1,m2 m1,m2,m3, m1,m2,…,m4 m1,m2 ,…,m5 m1,m2,…,m6 m1,m2,…,m7

Dempster’s rule m(θ1) = 0 m(θ1) = 0 m(θ1) = 0 m(θ1) = 0 m(θ1) = 0 m(θ1) = 0
m(θ2) = 0.8084 m(θ2) = 0.3876 m(θ2) = 0.5936 m(θ2) = 0.5388 m(θ2) = 0.2503 m(θ2) = 0.1472
m(θ3) = 0.1916 m(θ3) = 0.6124 m(θ3) = 0.4064 m(θ3) = 0.4612 m(θ3) = 0.7497 m(θ3) = 0.8528

Yager’s rule m(θ1) = 0 m(θ1) = 0.4498 m(θ1) = 0.3397 m(θ1) = 0.4811 m(θ1) = 0.4020 m(θ1) = 0.4610
m(θ2) = 0.1350 m(θ2) = 0.0581 m(θ2) = 0.0613 m(θ2) = 0.1193 m(θ2) = 0.0369 m(θ2) = 0.0687
m(θ3) = 0.0320 m(θ3) = 0.3460 m(θ3) = 0.0640 m(θ3) = 0.1498 m(θ3) = 0.1399 m(θ3) = 0.1627
m(Θ) = 0.8330 m(Θ) = 0.1461 m(Θ) = 0.5351 m(Θ) = 0.2498 m(Θ) = 0.4212 m(Θ) = 0.3076

WCR m(θ1) = 0.1801 m(θ1) = 0.6287 m(θ1) = 0.8194 m(θ1) = 0.9259 m(θ1) = 0.9670 m(θ1) = 0.9847
m(θ2) = 0.7068 m(θ2) = 0.1410 m(θ2) = 0.1083 m(θ2) = 0.0384 m(θ2) = 0.0073 m(θ2) = 0.0019
m(θ3) = 0.1131 m(θ3) = 0.2302 m(θ3) = 0.0723 m(θ3) = 0.0356 m(θ3) = 0.0256 m(θ3) = 0.0134

AWCR m(θ1) = 0.1801 m(θ1) = 0.6535 m(θ1) = 0.8430 m(θ1) = 0.9364 m(θ1) = 0.9696 m(θ1) = 0.9856
m(θ2) = 0.7068 m(θ2) = 0.1126 m(θ2) = 0.0841 m(θ2) = 0.0286 m(θ2) = 0.0053 m(θ2) = 0.0013
m(θ3) = 0.1131 m(θ3) = 0.2339 m(θ3) = 0.0729 m(θ3) = 0.0350 m(θ3) = 0.0250 m(θ3) = 0.0131

AWCR1 m(θ1) = 0.1801 m(θ1) = 0.7232 m(θ1) = 0.9088 m(θ1) = 0.9621 m(θ1) = 0.9766 m(θ1) = 0.9881
m(θ2) = 0.7068 m(θ2) = 0.0391 m(θ2) = 0.0226 m(θ2) = 0.0067 m(θ2) = 0.0011 m(θ2) = 0.0003
m(θ3) = 0.1131 m(θ3) = 0.2377 m(θ3) = 0.0685 m(θ3) = 0.0313 m(θ3) = 0.0223 m(θ3) = 0.0116

Fig. 6. Mass allocation of focal elements for various evidence fusions under different rules: (a) Mass allocation of θ1, (b) Mass allocation of θ2, (c) Mass allocation 
of θ3.

Fig. 7. Final mass assignment to targets with different rules.
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give results that are more consistent with intuitive judgments than the 
Dempster’s rule. In the combination of multiple evidence examples, it is 
shown that with the introduction of focal element dispersion and pref
erence consistency metrics, especially preference consistency, the rule is 
more sensitive to identify anomalous evidence and assign lower weights 
to it, which significantly improves the convergence. Finally, by adjusting 
the proportion of anomalous evidence in Monte Carlo simulations, we 
emphasize the anti-interference ability of AWCR and AWCR1. The 
experimental results show that AWCR1 exhibits the resistance to inter
ference and decision making ability due to all other rules.
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